The 13th Asia-Oceania Meteorological Satellite Users' Conference

Validation of AHI on Himawari-8/-9 in L1 Products and Preliminary Study Using PCA for Himawari-10

NAIKI Shiho, TAKAHASHI Masaya, SAITO Kotaro, OIKE Syunya, SUMITA Mayu, KODERA Kazuki, EIKI Misaki, TOKAIRIN Genki, and YOTA Azusa Meteorological Satellite Center/ Japan Meteorological Agency (MSC/JMA)

2014 Himawari-8

2016 Himawari-9

- Validation of AHI on Himawari-8/-9 in L1 Products
 - Mission Overview
 - AHI Specifications
 - Himawari-9/AHI Data Quality Validation
 - Image Navigation and Registration (INR)
 - ≻ Radiometric Calibration (VNIR and IR)

Preliminary Study Using PCA for Himawari-10

- Himawari-10 Overview
- PCA of Hyperspectral IR Sounder
 - ➤ MTG/IRS Simulated Radiances
 - ➢ NOAA-20/CrIS Observed Radiances
- Summary

Mission Overview

- Himawari-8/-9 are the third generation geostationary meteorological satellites operated by Japan Meteorological Agency (JMA).
- Himawari-9
 - 2nd Nov 2016 Launch
 - 10th Mar 2017 In-orbit standby
 - 27th Sep 2022 Data dissemination in parallel with Himawari-8
 - 13th Dec 2022 Operational after switchover
- Himawari-8
 - 13th Dec 2022 In-orbit standby after switchover

9 November 2023

AHI Specifications

Advanced Himawari Imager ٠ (AHI) onboard Himawari-8/-9 is the same series imager as ABI on GOES satellites and AMI on GK2A.

Band	Wavelength [µm]	Spatial Resolution at SSP [km]	
1	0.47	1	RGB band Composited
2	0.51	1	
3	0.64	0.5	
4	0.86	1	
5	1.6	2	
6	2.3	2	
7	3.9	2	
8	6.2	2	Water Vapor
9	7.0	2	
10	7.3	2	
11	8.6	2	SO ₂
12	9.6	2	03
13	10.4	2	Atmospheric Window
14	11.2	2	
15	12.3	2	
16	13.3	2	C0 ₂

Wavenumber (cm⁻¹)

9 November 2023

The 13th Asia-Oceania Meteorological Satellite Users' Conference

Himawari-9/AHI INR Performance

- Image navigation accuracy (absolute bias) using landmarks (NAV)
 - Mostly smaller than 0.4 km.
 - Errors over 1 km are mainly seen at midnight of eclipse seasons.
- ✤ Inter-band co-registration accuracy vs. B13 (10.4 µm) (BBR)
 - Band-dependent but mostly smaller than 40 m.

Time series of NAV and BBR performance from Sept. 2022 to Jul. 2023

Himawari-9/AHI VNIR Calibration Performance

- Comparison of AHI and NOAA-20/VIIRS reflectance (i.e. "ray-matching" inter-calibration)
 - SRF differences between AHI and VIIRS are compensated by Spectral Band Adjustment Factor (SBAF) developed by NASA/LaRC.
 SBAF: https://satcorps.larc.nasa.gov/cgi-bin/site/showdoc?mnemonic=SBAF
- Biases against the reference are 1 5%
 - Small degradation trends (~0.5%/year) in B03 and B04 are seen in Himawari-8/AHI.

Himawari-9/AHI reflectance divided by NOAA-20/VIIRS reflectance (Sept. 2022 - Jul. 2023)

Himawari-9/AHI IR Calibration Performance

- TB biases vs. Metop-B/IASI at standard scenes* *
 - Stable and small biases (< 0.3 K).
 - Variations in March 2023 are due to a lack of IASI data (No issues in Himawari-9/AHI observation performance).

Himawari-10 Overview

- JMA contracted manufacturing of the follow-on satellite Himawari-10 in March 2023, with initiation of operation scheduled for FY 2029.
- Onboard sensors for meteorological/non-meteorological purposes
 - Geostationary HiMawari Imager (GHMI)
 - Successor to AHI, improvement from Himawari-8/9 (e.g. 18 bands)
 - Geostationary HiMawari Sounder (GHMS)
 - Hyperspectral IR sounder (HSS) captures 3-D atmospheric state for improving JMA services in extreme weather monitoring, nowcasting and numerical weather predictions (NWP).

9 November 2023

Preliminary Study Using PCA for Himawari-10

- HSS measurements
 - Represented as radiances of more than 1000 wavenumbers, which are spectrally highly correlated
- Using Principal Component Analysis (PCA)
 - Remove noise while preserving the signal
 - Compress data size by reducing dimensionality

Investigate the applicability of reconstructed radiances from PC scores to L1 data monitoring and other applications (e.g., NWP)

9 November 2023

HSS Data Used for Validation and Method

- HSS data
 - Case 1) MTG/IRS simulated radiances
 NWP SAF Radiance Simulator + ERA-5
 >LW: 881ch, MW: 1079ch
 - Case 2) NOAA-20/CrIS observed radiances
 LW: 717ch, MW: 869ch, SW: 637ch
- Method
 - Compute PC scores from noise-added radiances (case 1) or original radiances (case 2)
 - ➤ 150 scores for each band
 - Reconstruct radiances from all PC scores
 - Compare reconstructed radiances with noise-added radiances or original radiances

Flow from PC scores computation to reconstruction

Case 1) MTG/IRS Simulated Radiances

 Reconstructed radiances contain very few "added-noise"

The 13th Asia-Oceania Meteorological Satellite Users' Conference

22

Max difference: ~ 0.1 K

-0.4

Difference

Case 2) NOAA-20/CrIS Observed Radiances

Difference

MW CH300

- Comparison of difference between original and reconstructed radiances with NEdR.
- Noise in the observed data has been reduced.

9 November 2023

Case 2) NOAA-20/CrIS Observed Radiances

- CrIS NEdR is large at FOV 9 of descending orbit used in this study.
- Difference is large at FOV 9.

Difference between original and reconstructed radiances for each FOV

Summary

- Validation of Himawari-9/AHI Data Quality
 - INR accuracy is ~0.4 km (for reference mapping) and 40 m (between bands).
 - Radiometric calibration biases for VNIR bands are 1-5%, and those for IR bands are less than 0.3 K.
 - These have been as small as those of Himawari-8/AHI.
- Preliminary Study Using PCA for Himawari-10 HSS (GHMS)
 - To investigate the applicability of reconstructed radiances from PC scores to L1 data monitoring, we validated how much noise we can reduce by PCA.
 - Radiances reconstructed from PC scores using IRS simulated data and CrIS observed data significantly reduced the noise compared to the noise-added radiances or original radiances.
 - Future plans
 - How many PC scores to compute, How much data can be compressed
 - Use of computed PC scores for L1 data quality control and products